亞東學校財團法人亞東科技大學 114年度教材編纂暨教具製作 結案報告

資料分析方法與應用

申 請 人: 賴宜弘

單 位: 醫務管理系

民 國 一 四 年 七 月

114年 教材編纂與教具製作補助 結案報告(113-2 學期)									
教	師	姓	名	賴宜弘	宜弘 系所、單位 醫務管理系				
課	程	名	稱	資料分析方法與應用					
				静態式數位教材	□題庫編纂 ☑PPT、講義之靜態式自學教材				
申請類別(詳細類別)			別)	動態影音式數位教材	□線上題庫系統 □電子書 □PPT 自學教材(錄音講解) □串流影音式自學教材				
				教案設計式教材開發	□創新創意教案設計 □即時互動教學教案設計				
				教具製作	□實體教	具(教師自行)	開發)		
重教	點材	發 特	展色	☑專業課程之 全英語	教學 或 E	MI 教學			
發	展	特	色				成 □教師著作出版品 ISBN		
('	需指	—	.)	□五創(創新、創意、)					
1	3 2 3 1 1	1 \- 1	++	提升教學品質之					
				文為授課媒介(Englis ・盟盟四知公	sh Medium	Instruction)。		
				關學理解說。					
3、新教材新增相關範例說明。									
1 、	提升教學品質之質性成果(與舊課程比較)								
1、問題導向學習 (Problem-based learning)。 2、著重學生上機實作。									
3、整合國外大學相關課程之教材,提供學生最新知識。									
學習成效評估檢討與後續補充事項									
1、問題導向學習係以問題作為核心,配合教師所設計之英文教學教材,提供學習者進行問題相關									
資料的蒐集、思考與討論等合作式學習互動,進而整合問題的相關資訊,以達解決問題之目的,提									
升學生學習興趣。									
2、問題導向學習係以小組學習模式進行,組內的學習者之間必須透過各種合作式的互動來解決學									
習問題,藉由小組學習的歷程,學習者之間可以有效的學習問題解決方法,並分享彼此的學習心得,									
降低學生對英文內容的恐懼。									
補	補充附件(教材檔案網址、活動紀錄、教具放置地點等補充成果,視情況可另附)								

繳交附件列表(含電子檔內容目錄) 請依照規定繳交

相關教材將置放於學校課程資料網站,學生可隨時下載複習。

相關教材如附檔所示。

成果照片(教具照片 請再附照片原始檔案)

小組討論

課堂講解 課堂講解)

期末測驗

114年 教材編纂與教具製作補助 結案資料 自審表(113-2 學期)

			例 自審結案相關資料,相關定義與分類 纂、教具製作 之 分類與補助金額表(113-2)			
	類別	細項類別	繳交資料 (方框□ 為 必交之結案資料)			
	所有類別皆	需缴交 結案報告	a.☑ 結案報告(需含 <mark>學習成效問卷)</mark> 附註:可自行設計與統計 或 提供每學期課程 <mark>學生學習評量</mark>			
	静態式 數位教材	□題庫編纂	b. □ 題庫電子檔 (100 題以上) c. □ 題庫解答(含解說) 附註:b.c.項可合併			
	(上限 20000 元)	☑自學式教材(靜態講義)	b. ☑ PPT 或 講義電子檔 (12 週以上自學教材講義,並提供週次與章節列表)			
	動態影音式	□線上題庫系統	b.□ 動態式題庫 或 線上題庫系統檔案(需可單獨運作,系統程式檔需提供存查) c.□ 線上題庫系統:網址 附註:b.c.可擇一,如為線上題庫網址,需可連結並執行,且必須維持系統3年以上運作。			
結	數位教材 (上限 40000 元)	□PPT 自學教材 (錄音講解)	b. □ PPT 自學教材檔案(9週以上課程,教師錄音講解總時長需滿 3 小時,並提供週次與章節列表)			
案資		□串流影音式 自學教材	b. □ 串流影音式自學教材檔案(教材影片總時長需滿 6 小時以上,並需剪輯整理,非上課錄影)			
料確		□電子書	b.□ 電子書(須可以獨立執行檔案) (9週以上課程,須為獨立執行檔案,非影片)			
認	教案設計式 教材開發 (上限 40000 元)	□創新創意 教案設計	b. □ 教案開發 設計文件 或 搭配教案課程之數位教材(擇一) c. □ 執行教案開發之 活動照片 (10 張以上,請提供原始檔) e. □ 執行教案開發之 影音資料 (5 分鐘以上)			
		□即時互動 教學教案設計	f. ○ 教案發展之其他資料 與 電子檔(可自行提供)。 附註: 請勿直接提供學生成果或作品,如提供雲端資料,需可連結並執行,且必須維持系統3年以上運作			
	教具製作 (上限 60000 元)	□實體教具 (教師自行開發)	b. □ 教具成品,保存地點:			
	重點發展 教材特色	☑全英語教材	☑全英語動態影音式數位教材,			
-	其他補充說明 ○ 其他補充說明或資料,如篇幅不敷使用時,請另增列。					
※請	※請 自行審查 結案資料是否完善,並將此表附於 結案報告 內繳交。					

學生學習評量

學號	姓名	系所名稱	年級	學期成績	期中考	期末考	平時考	出席	作業
112110101	沈喬昕	日間部四技醫務管理系	2	99	100	100	98	95	100
112110102	解異翔	日間部四技醫務管理系	2	71	100	100	18	45	0
112110103	洪紹鈞	日間部四技醫務管理系	2	99	100	100	100	100	100
112110104	游云禎	日間部四技醫務管理系	2	77	90	100	38	95	0
112110106	盧奕亘	日間部四技醫務管理系	2	99	100	100	98	95	100
112110107	黄宜柔	日間部四技醫務管理系	2	99	100	100	100	100	100
112110109	游琇芸	日間部四技醫務管理系	2	99	100	100	98	95	100
112110110	秦恩惠	日間部四技醫務管理系	2	90	90	100	72	90	60
112110111	劉子瑜	日間部四技醫務管理系	2	71	100	100	18	45	0
112110112	蘇恩俐	日間部四技醫務管理系	2	99	100	100	98	95	100
112110113	施宥亘	日間部四技醫務管理系	2	99	100	100	100	100	100
112110114	張晉維	日間部四技醫務管理系	2	95	100	90	88	100	80
112110115	鄭泳麒	日間部四技醫務管理系	2	92	100	100	76	70	80
112110116	伊君慧	日間部四技醫務管理系	2	93	90	100	82	85	80
112110117	陳鈺晴	日間部四技醫務管理系	2	91	90	100	74	95	60
112110118	王于萍	日間部四技醫務管理系	2	91	100	100	72	90	60
112110119	吳尚安	日間部四技醫務管理系	2	98	100	100	96	90	100
112110120	李品潔	日間部四技醫務管理系	2	99	90	100	100	100	100
112110122	林文晨	日間部四技醫務管理系	2	92	100	100	76	100	60
112110123	王苡婷	日間部四技醫務管理系	2	99	100	100	100	100	100
112110124	邱子榕	日間部四技醫務管理系	2	90	90	100	72	90	60
112110125	謝佳蓁	日間部四技醫務管理系	2	92	100	100	76	70	80
112110126	陳繹竣	日間部四技醫務管理系	2	99	100	100	98	95	100
112110127	張富暟	日間部四技醫務管理系	2	84	100	90	54	75	40
112110128	黄薰儀	日間部四技醫務管理系	2	99	100	100	100	100	100
112110130	顏正堯	日間部四技醫務管理系	2	78	100	100	36	60	20
112110131	楊姍樺	日間部四技醫務管理系	2	99	90	100	100	100	100
112110132	吳畇緹	日間部四技醫務管理系	2	99	100	100	100	100	100
112110133	柳冠宇	日間部四技醫務管理系	2	71	100	90	20	50	0
112110136	陳璽弘	日間部四技醫務管理系	2	86	100	100	58	85	40
112110138	劉之霖	日間部四技醫務管理系	2	75	80	100	34	55	20
112110141	陳玟伶	日間部四技醫務管理系	2	60	0	0	34	55	20
112110142	鄭凱薰	日間部四技醫務管理系	2	99	100	100	100	100	100
111110136	廖心妤	日間部四技醫務管理系	3	91	80	60	92	80	100
111110138	許翊純	日間部四技醫務管理系	3	75	90	90	36	60	20

附件一、上課照片

小組討論

小組討論

課堂講解

課堂講解

期末測驗

期末測驗

1. Data Preparation

Course Outline

• Data Preparation

• Case Study 1: Titanic Sinking

• Case Study 2: Iris

Data Preparation

- Data preparation is crucial in big data analysis and processing because datasets often contain various errors, like outliers, inconsistent column names, and duplicate rows.
- Using dirty data poses the risk of having bias or inaccurate outputs after analysis. User can avoid this by cleaning the data.
- Data cleaning, also called data cleansing or scrubbing, is the process of identifying duplicate, incomplete, or incorrect data and correcting or deleting them in the dataset.
- Purging errors from the dataset will improve the data quality and ensure an accurate analysis, which is crucial for effective decision-making.

Data Cleaning Steps for Preparing the Data

- Remove duplicate and incomplete cases
- · Remove oversamples
- · Ensure answers are formatted correctly
- · Identify and review outliers
- Code open-ended data
- · Check for data consistency

Remove duplicate and incomplete cases

- · Identify and remove duplicate data
 - Duplicate errors describe situations where you have repeated entries in a dataset. Such entries can artificially inflate the dataset's size, making it more difficult to work with.
- · Identify and remove incomplete cases in datasets
 - Incomplete cases are data points that are missing one or more important values. For example, it's common for some respondents to skip certain questions when they fill out surveys, meaning some fields of your data will be blank.

Remove oversamples

- · Consider this scenario: You send out a survey to analyze the annual income of people in a population. After the results return, you get a total response from 650 entries (350 who identify as male and another 300 who identify as female). In data science, we call that imbalanced data because one group has more representation than the other.
- To create balanced data, user may have to randomly remove 50 male entries, bringing the total of each set to 300. The image below shows a similar scenario, but with a smaller dataset.

- In data science, we often gather input from multiple data sources, like surveys and questionnaires. It's common to see structural errors where people present similar answers in different formats.
- For example, some people may write phone numbers using the format (999) 999 9999, while others may use dashes in the format (999) 999-9999. Or you may have varying spellings when referring to the same things, like writing "December" as "Dec." Neglecting these errors will cause the algorithm to interpret such entries as separate, introducing errors to the analysis.

宜弘 資料分析方法與應用20

 An outlier is a data point that is significantly different from the rest of the data. Data collection errors and natural data variations can cause outliers. Identifying outliers in a dataset before performing any statistical analysis is important, as they can skew the results.

skew the results.

• There are several methods for identifying outliers in a dataset. One common method is to calculate the interquartile range (the range of values in the middle) of the data and identify any data points that are more than two standard deviations away from the mean. Another method is to create a graphical visualization with box plots or the data points on a graph and look for any points that are far away from the rest of the data.

1

假宣弘 資料分析方法與應用2025E

Code Open-ended Data

- · Analyze the entries.
 - People typically analyze open-ended data in two ways. One way is to read through each entry manually. This way, you can analyze the intent of the respondent and categorize the entry accordingly.
- Create relevant categories.
 - As you analyze each entry and identify the respondent's intent, you can classify varied categories and tag each entry with a matching category.
 For instance, if you're analyzing a customer complaints form for a bank, you
 - For instance, if you're analyzing a customer complaints form for a bank, you can create categories like "deposit," "mobile transfer," or "mortgage" based on the subject of the complaints.

DRITTS.

資料分析方法與應用2025日

9

1

Check for Data Consistency

- Checking for data consistency is an important validation step in filtering out bad data. It ensures high-quality data for proper analysis.
- Running a data consistency check requires that you critically observe the modified or cleaned dataset and compare it with the original entries. The goal here is to ensure there are no contradictions between the original entries and the refined data. If you notice any inconsistencies, you may correct the error manually or remove the affected row from the dataset.

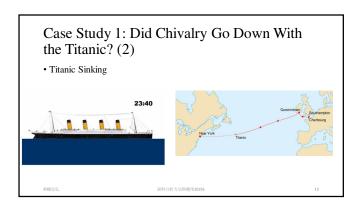
Process for Data Mining

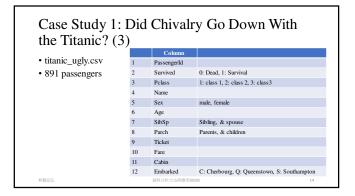
• Process for Data Mining

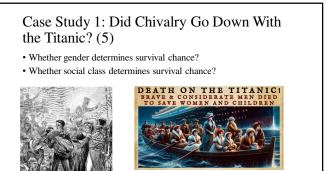
Case Study 1: Did Chivalry Go Down With the Titanic? (1)

- The RMS Titanic sank in the early morning hours of 15 April 1912 in the North Atlantic Ocean, four days into her maiden voyage from Southampton to New York City.
- The largest ocean liner in service at the time, Titanic had an estimated 2,224 people on board when she struck an iceberg at around 23:40 (ship's time) on Sunday, 14 April 1912.
- Her sinking two hours and forty minutes later at 02:20 (ship's time; 05:18 GMT) on Monday, 15 April, resulted in the deaths of more than 1,500 people, making it one of the deadliest peacetime maritime disasters in history.

順宣弘 資料分析方法與應用20







Import the File to DataFrame • from google.colab import drive • drive.mount('/content/MyGoogleDrive')

• import pandas

 $\bullet \ df=pandas.read_csv('/content/MyGoogleDrive/My \ Drive/titanic_ugly.csv')$

• df

音官引, 音科分析方法專應用202

Description of the Data in the DataFrame

• df.info()

• df.describe()

弘 資料分析方法與應用2025E

Duplicate Values in a DataFrame

- df[df.duplicated()]
- df=df.drop_duplicates()

ORDER.

資料分析方法與應用2025

NULL values in a DataFrame (1): Continuous Data

• df['Age2']=df['Age'].fillna(df['Age'].mean())

estrory.

資料分析方法與應用2025

NULL values in a DataFrame (2): Categorical Data

- #Find Max one
- $\bullet \ df['Embarked'].value_counts()$
- df['Embarked']=df['Embarked'].fillna('S')

08000

6科分析方法與應用2025E

To Recode Values in a DataFrame

- sex_code={'female':0, 'male':1}
- $\bullet \ df['Sex2'] = df['Sex'].map(sex_code) \\$
- $port_code=\{'S':0, 'C':1, 'Q':2\}$
- df['Embarked2']=df['Embarked'].map(port_code)

0(0)

資料分析方法即應用2025E

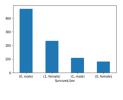
Descriptive Analysis (1): Data Visualization

- $\bullet \ df['Survived'].value_counts().plot(kind='pie',\ autopct='\%1.2f\%\%')\\$
- $\bullet \ df['Sex'].value_counts().plot(kind='pie',\ autopct='\%1.2f\%\%')$
- $\bullet\ df['Pclass'].value_counts().plot(kind='pie',\ autopct='\%1.2f\%\%')$

3

Descriptive Analysis (2): Data Visualization

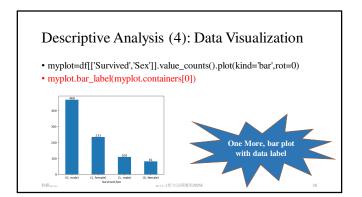
 $\bullet \ df[['Sex', 'Survived']].value_counts().plot(kind='bar', \ rot=0)\\$



資料分析方法與應用2025E

24

Descriptive Analysis (3): Data Visualization • df[['Survived','Sex','Pclass']].value_counts().plot(kind='bar')



Example 1. Three Species of Iris (1)

- The Iris Dataset contains four features (length and width of sepals and petals) of 50 samples of three species of Iris (Iris setosa, Iris virginica and Iris versicolor).
- The famous (Fisher's or Anderson's) iris data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris.
- Dataset: iris_ugly.csv

Example 1. Three Species of Iris (2)

• Code Book

	Column	Note
1	Length of Sepals	
2	Width of Sepals	
3	Length of Petals	
4	Width of Petals	
5	class	Iris setosa
		Iris virginica
		Iris versicolor

Import the File to DataFrame

- from google.colab import drive
- drive.mount('/content/MyGoogleDrive')
- · import pandas
- df=pandas.read_csv('/content/MyGoogleDrive/My Drive/iris_ugly.csv')

Description of the Data in the DataFrame

- df.info()
- df.describe()

Duplicate Values in a DataFrame

- df[df.duplicated()]
- df=df.drop_duplicates()

ORDER.

資料分析方法與應用2025E

NULL values in a DataFrame: Continuous Data

• df['Length of Sepals']=df['Length of Sepals'].fillna(df['Length of Sepals'] mean())

mátrica:

資料分析方法與應用2025E

To Recode Values in a DataFrame (1)

- class_code={ 'Iris_setosa':1, 'Iris_virginica':2, 'Iris_versicolor':3}
- df['class1']=df['class'].map(class_code)

0年11日

料分析方法與應用2025E

To Recode Values in a DataFrame (2)

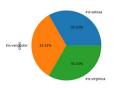
- #The color in plot
- color_code={'Iris-setosa': 'r', 'Iris-versicolor': 'g', 'Iris-virginica': 'b'}
- $\bullet \ df['class_color'] = df['class'].map(color_code) \\$

○相正正.

料分析方法與應用2025E

Descriptive Analysis: Data Visualization (1)

- $\bullet \ df['class'].value_counts()$
- $\bullet \ df['class'].value_counts().plot(kind='pie',\ autopct='\%1.2f\%\%')\\$

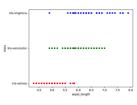


ORIGIN.

資料分析方法與應用2025E

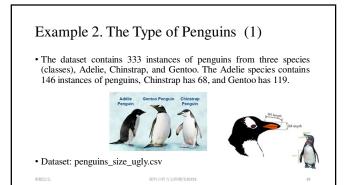
Descriptive Analysis: Data Visualization (2)

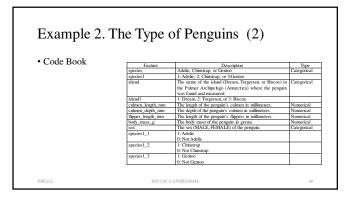
• df.plot(kind='scatter',x='sepal_length',y='class', c='class_color')



宜弘 資料分析方法與應

Descriptive Analysis: Data Visualization (3) • df.plot(kind='scatter',x='sepal_length',y='petal_width', c='class_color')





Course Outline

- Data Science
- Database Table
- Machine Learning
- Types of Machine Learning
- Process for Data Mining
- Note: Split The Dataset

Data Science

- Data Science is a combination of multiple disciplines that uses statistics, data analysis, and machine learning to analyze data and to extract knowledge and insights from it.
- Data Science is about data gathering, analysis and decision-making.
- Data Science is about finding patterns in data, through analysis, and make future predictions.
- By using Data Science, companies are able to make:
 - Better decisions (should we choose A or B)
 - Predictive analysis (what will happen next?)
 - Pattern discoveries (find pattern, or maybe hidden information in the data)

How Does a Data Scientist Work

1

- Backgrounds
 Machine Learning
 Statistics
 Programming (Python or R)
 Mathematics
 Databases
- · Data Scientist works

 - Atat Scientist works

 Ask the right questions: To understand the business problem.

 Explore and collect data: From database, web logs, customer feedback, etc.

 Estract the data: Transform the data to a standardized format.

 Clean the data: Remove erroneous values from the data.

 Find and replace missing values: Check for missing values and replace them with a suitable value.

 Normalize data: Scale the values in a practical range.

 Analyze data, find patterns and make future predictions.

 Represent the result: Present the result with useful insights in a way the "company" can understand.

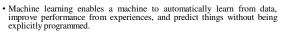
What is Data

- Data is a collection of information.
- One purpose of Data Science is to structure data, making it interpretable and easy to work with.
- Data can be categorized into two groups:
 - Unstructured data: Unstructured data is not organized. We must organize the data for analysis purposes.
 - Structured data: Structured data is organized and easier to work with.

Database Table

- · A database table is a table with structured data
- A database table consists of column(s) and row(s)
 - · A row is a horizontal representation of data
 - · A column is a vertical representation of data
- Variables
 - · A variable is defined as something that can be measured or counted

Machine Learning



1

 A Machine Learning system learns from historical data, builds the prediction models, and whenever it receives new data, predicts the output for it. The accuracy of predicted output depends upon the amount of data, as the huge amount of data helps to build a better model which predicts the output more accurately.

Features of Machine Learning

- Machine learning uses data to detect various patterns in a given dataset.
- It can learn from past data and improve automatically.
- It is a data-driven technology.
- · Machine learning is much similar to data mining as it also deals with the huge amount of the data.

Types of Machine Learning

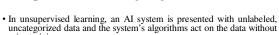
- · Supervised Learning
- · Unsupervised Learning
- Reinforcement Learning

Supervised Learning Algorithm

1

- In Supervised learning, an AI system is presented with data which is labeled, which means that each data tagged with the correct label.
- The goal is to approximate the mapping function so well that when you have new input data (x) that you can predict the output variables (Y) for that data.
- · Types of Supervised learning
 - · Classification: A classification problem is when the output variable is a
 - · Regression: A regression problem is when the output variable is a real value.

Unsupervised Learning Algorithm

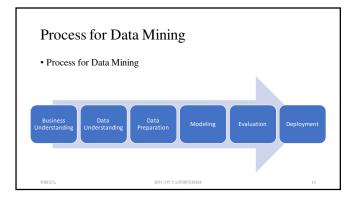


- prior training. • The output is dependent upon the coded algorithms. Subjecting a system to unsupervised learning is one way of testing AI.
- Types of Unsupervised learning

 - Clustering: A clustering problem is where you want to discover the inherent groupings in the data, such as grouping customers by purchasing behavior.
 Association: An association rule learning problem is where you want to discover rules that describe large portions of your data, such as people that buy X also tend to buy Y.

Reinforcement Learning Algorithm

- · A reinforcement learning algorithm, or agent, learns by interacting
- The agent receives rewards by performing correctly and penalties for performing incorrectly.
- The agent learns without intervention from a human by maximizing its reward and minimizing its penalty.
- It is a type of dynamic programming that trains algorithms using a system of reward and punishment.



1. Business Understanding

- What does the business need?
- The Business Understanding phase focuses on understanding the objectives and requirements of the project.
- Task
 - · Determine business objectives
 - · Assess situation
 - Determine data mining goals
 - Produce project plan

0相音形

分析方法與應用2025E

2. Data Understanding

- What data do we have / need? Is it clean?
- Data Understanding phase drives the focus to identify, collect, and analyze the data sets that can help people accomplish the project goals.
- Tasl
 - Collect initial data
 - Describe data
 - Explore data
 - · Verify data quality

OMES

6科分析方法與應用20250

15

3. Data Preparation

- How do we organize the data for modeling?
- Data Understanding phase drives the focus to identify, collect, and analyze the data sets that can help people accomplish the project goals.
- Task
- Select data
- Clean data
- Construct data
- Integrate data • Format data

OHEC

資料分析方法與應用2025E

4. Modeling

- What modeling techniques should we apply?
- People build and assess various models based on several different modeling techniques.
- Task
 - Select modeling techniques
 - Generate test design
 - Build model
 - Assess model

ORIGIN.

資料分析方法與應用2025E

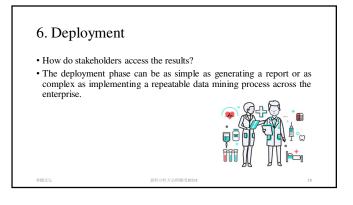
5. Evaluation

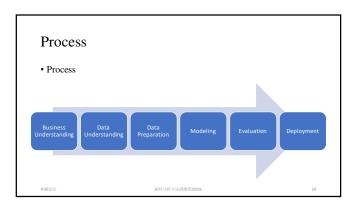
- Which model best meets the business objectives?
- Whereas the Assess Model task of the Modeling phase focuses on technical model assessment, the Evaluation phase looks more broadly at which model best meets the business and what to do next.
- Task
 - Evaluate results
 - Review process
 - Determine next steps

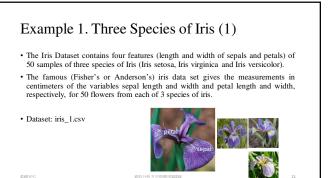
MEHO

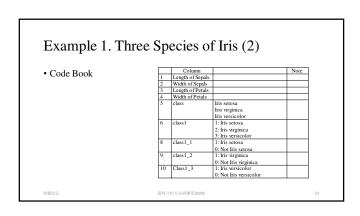
資料分析方法與應用2025E

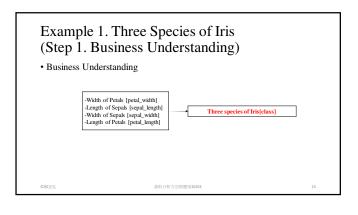
18











Example 1. Three Species of Iris (Step 2. Data Understanding 1) #Open File from google.colab import drive drive.mount(/content/MyGoogleDrive') import pandas df=pandas.read_csv(/content/MyGoogleDrive/My Drive/iris_1.csv') df

Example 1. Three Species of Iris (Step 3. Data Preparation 1)

- df.drop_duplicates() df.dropna(how='any')
- $\bullet \ df['sepal_length'].fillna(value=df['sepal_length'].mean(), \ inplace=True)\\$

Example 1. Three Species of Iris (Step 3. Data Preparation 2)

- ## Split the dataset into training and testing sets
- · from sklearn.model_selection import train_test_split
- x=df[['sepal_length', 'sepal_width','petal_length']]y=df['petal_width']
- x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
- data_train=pandas.concat([x_train,y_train],axis=1)
- data_test=pandas.concat([x_test,y_test],axis=1)
- data_train

Note: Split The Dataset With scikit-learn's train_test_split() (1)

- With train_test_split() from scikit-learn, user can efficiently divide the dataset into training and testing subsets to ensure unbiased model evaluation in machine learning.
- This process helps prevent overfitting and underfitting by keeping the test data separate from the training data, allowing users to assess the model's predictive performance accurately.
- · Source: https://realpython.com/train-test-split-python-data/

Note: Split The Dataset with scikit-learn's train_test_split() (2)

- train_test_split() is a function in sklearn that divides datasets into training and testing subsets.
- x_train and y_train represent the inputs and outputs of the training data subset, respectively, while x_test and y_test represent the input and output of the testing data subset.
- \bullet By specifying test_size=0.2, user use 20% of the dataset for testing, leaving 80% for training.
- train_test_split() can handle imbalanced datasets using the stratify parameter to maintain class distribution.

Note: Split The Dataset with scikit-learn's train_test_split() (3)

- The training set is applied to train or fit your model. For example, you use the training set to find the optimal weights, or coefficients, for linear regression, logistic regression, or neural networks.
- The validation set is used for unbiased model evaluation during hyperparameter tuning. For example, when you want to find the optimal number of neurons in a neural network or the best kernel for a support vector machine, you experiment with different values. For each considered setting of hyperparameters, you fit the model with the training set and assess its performance with the validation set.
- The test set is needed for an unbiased evaluation of the final model. You shouldn't use it for fitting or validation.

3. Linear Regression

Course Outline

- Multiple Linear Regression
- Estimation of Parameters
- Assumptions for MLR
- Note: Evaluation

Linear Regression

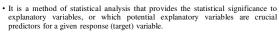
- Beginning with the definition of regression, for determining the significance and potential of the relationships between a dependent variable and a series of independent variables, a statistical method is used, known as regression.
- · Two basics types of regression are;
 - Simple Linear Regression
 Multiple Linear Regression
- Linear regression attempts to identify the connection amid the two variables along a straight line.
- Simply, this model is used to predict or show the relationship between a dependent

1

Multiple Linear Regression (1)

· Multiple linear regression is simply the extension of simple linear regression, that predicts the value of a dependent variable (sometimes it is called as the outcome, target or criterion variable) on the basis of two or more independent variables (or sometimes, the predictor, explanatory or regressor variables).

Multiple Linear Regression (2)



It can be used to determine the impact of changes, i.e to understand the changes in the dependent variable while making changes in the independent variables. For example, reviewing the health of a person to check how much blood pressure goes up and down with a unit change in the body mass index of that person, keeping other factors constant.

Multiple Linear Regression (3)

- Multiple linear regression is a mathematical technique that deploys the relationship among multiple independent predictor variables and a single dependent outcome variable.
- The methodology also involves the various means of determining which variables are important and can be implemented to make a regression model for prediction considerations.

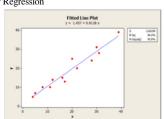
Multiple linear regression Formula

- The equation of multiple linear regression is expressed as
- y_i=β₀+β₁ x_{i1}+β₂ x_{i2}+......+β_p x_{ip}+Ø
- Where for
- i=n observations;
- y_i= dependent variable,
- x_i= explanatory variables, here we have "p" predictor variables and "p+1" as total regression parameters.
- β_0 = y-intercept which is a constant term,
- + β_p = Slope coefficient for each explanatory variable, and
- Ø= residuals (model's error term), having a normal distribution with mean 0 and constant variance,
- $\bullet \ \ \text{In multiple linear regression, the word linear signifies that the model is linear in parameters, } \\ \beta_0, \beta_1, \beta_2 \text{ and so on.} \\$

OHESS.

資料分析方法與應用202

Linear Relationship - Scatter Plot



1

Estimation of Parameters (1)

- Given a collection of pairs (x, y) of numbers (in which not all the x-values are the same), there is a line $\hat{y}=\hat{\beta}_1x+\hat{\beta}_0$ that best fits the data in the sense of minimizing the sum of the squared errors.
- It is called the least squares regression line. Its slope $\hat{\beta}_1$ and y-intercept $\hat{\beta}_0$ are computed using the formulas

OHES.

有料分析方法與應用**2025**6

Estimation of Parameters (2)

- The Maximum Likelihood Regression Line
- $\hat{y}=\hat{\beta}_1x + \hat{\beta}_0$

$$\begin{split} \hat{\beta_0} &= \frac{\sum_{l=1}^n \chi_l}{\sum_{l=1}^n \chi_l} \frac{\sum_{l=1}^n \chi_l}{\sum_{l=1}^n \chi_l} = \frac{\sum_{l=1}^n \chi_l}{\sum_{l=1}^n \chi_l} \frac{\sum_{l=1}^n \chi_l}{\sum_{l=1}^n \chi_l} \frac{\sum_{l=1}^n \chi_l}{\sum_{l=1}^n \chi_l^2 - \sum_{l=1}^n \chi_l} \frac{\sum_{l=1}^n \chi_l \chi_l \gamma_l}{\sum_{l=1}^n \chi_l^2 - \sum_{l=1}^n \chi_l} \frac{\sum_{l=1}^n \chi_l \chi_l \gamma_l}{\sum_{l=1}^n \chi_l^2 - \sum_{l=1}^n \chi_l} = 9 - \beta_2 \hat{\mathbf{x}} \end{split}$$

$$\hat{\beta}_1 = \frac{\left| \frac{n}{\sum_{l=1}^n x_l} \frac{\sum_{l=1}^n y_l}{\sum_{l=1}^n x_l} \frac{\sum_{l=1}^n x_l y_l}{\sum_{l=1}^n x_l} - \frac{\sum_{l=1}^n x_l y_l - n\bar{x}\bar{y}}{\sum_{l=1}^n x_l^2 - n\bar{x}^2} \right| = \frac{\sum_{l=1}^n (x_l - \bar{x})(y_l - \bar{y})}{\sum_{l=1}^n x_l^2 - n\bar{x}^2} = \frac{\sum_{l=1}^n (x_l - \bar{x})(y_l - \bar{y})}{\sum_{l=1}^n (x_l - \bar{x})x_l} = \frac{\sum_{l=1}^n (x_l - \bar{x})y_l}{\sum_{l=1}^n (x_l - \bar{x})x_l}$$

O#E5

料分析方法與應用2025E

Assumption 1: Linear Relationship (1)

- \bullet There is a linear relationship between the independent variable x, and the independent variable y.
- The easiest way to detect if this assumption is met is to create a scatter plot of x vs. y.
 - This allows you to visually see if there is a linear relationship between the two variables.
 - If it looks like the points in the plot could fall along a straight line, then there exists some type of linear relationship between the two variables and this assumption is met.

資料分析方法與應用2025E

Assumption 1: Linear Relationship (2)

- If you create a scatter plot of values for x and y and see that there is not a linear relationship between the two variables, then you have a couple options:
 - Apply a nonlinear transformation to the independent and/or dependent variable.
 Common examples include taking the log, the square root, or the reciprocal of the independent and/or dependent variable.
 - Add another independent variable to the model. For example, if the plot of x vs. y has a parabolic shape then it might make sense to add x2 as an additional independent variable in the model.

0相宜弘

資料分析方法與應用2025E

12

Assumption 2: Independence (1)

- The residuals are independent.
 - This is mostly relevant when working with time series data. Ideally, we don't want there to be a pattern among consecutive residuals. For example, residuals shouldn't steadily grow larger as time goes on.

1

1

- The simplest way to test if this assumption is met is to look at a residual time series plot, which is a plot of residuals vs. time.
 - Ideally, most of the residual autocorrelations should fall within the 95% confidence bands around zero, which are located at about +/- 2-over the square root of n, where n is the sample size.
 - · You can also formally test if this assumption is met using the Durbin-Watson

Assumption 2: Independence (2)

- · Depending on the nature of the way this assumption is violated:
 - For positive serial correlation, consider adding lags of the dependent and/or independent variable to the model.

1

4

- For negative serial correlation, check to make sure that none of your variables are over differenced.
- · For seasonal correlation, consider adding seasonal dummy variables to the

Assumption 3: Homoscedasticity (1)

- The residuals have constant variance at every level of x. This is known as homoscedasticity. When this is not the case, the residuals are said to suffer from heteroscedasticity.
- When heteroscedasticity is present in a regression analysis, the results of the analysis become hard to trust. Specifically, heteroscedasticity increases the variance of the regression coefficient estimates, but the regression model doesn't pick up on this. This makes it much more likely for a regression model to declare that a term in the model is statistically significant, when in fact it is not.

Assumption 3: Homoscedasticity (2)

- The simplest way to detect heteroscedasticity is by creating a fitted value vs.
- The simplest way to detect neteroscedasticity is by creating a fitted value waresidual plot.
 Once you fit a regression line to a set of data, you can then create a scatterplot that shows the fitted values of the model vs. the residuals of those fitted values. The scatterplot below shows a typical fitted value vs. residual plot in which heteroscedasticity is present.
 Notice how the residuals become much more spread out as the fitted values get larger. This "cone" shape is a classic sign of heteroscedasticity:

Assumption 3: Homoscedasticity (3)

- · The common ways to fix heteroscedasticity:
 - e common ways to fix heteroscedasticity:

 Transform the dependent variable.

 One common transformation is to simply take the log of the dependent variable. For examining the production size (independent variable) to predict the number of flower shops in a cit variable, we may instead thy to use population size to predict the log of the number of how city. Using the log of the dependent variable, rather than the original dependent variable, before the dependent variable.

 Redefine the dependent variable.

 - Redefine the dependent variable.
 One common way to redefine the dependent variable is to use a rate, rather than the raw value. For example, instead of using the population size to predict the number of flower shops me active the reduces a reduce shop to the reduces t

Assumption 4: Normality (1)

· The next assumption of linear regression is that the residuals are normally distributed.

Assumption 4: Normality (2)

- The common ways to check if this assumption is met:

 Check the assumption visually using Q-Q plots.

 A Q-Q plot, short for quantile-quantile plot, is a type of plot that we can use to determine whether or not the residuals of a model follow a normal distribution. If the points on the plot roughly form a straight diagonal line.

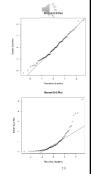
 The following Q-Q plot shows an example of residuals that roughly follow a normal distribution:

 The Q-O plot below shows an example of when the articles below they are recommended.

 - normal distribution:

 The Q-Q plot below shows an example of when the residuals clearly depart from a straight diagonal line, which indicates that they do not follow normal distribution:
 - distribution."

 You can also check the normality assumption using formal statistical tests like Shapiro-Wilk, Kolmogorov-Smironov, Jarque-Barre, or D'Agostino-Pearson. However, keep in mind that these tests are sensitive to large sample sizes that is, they often conclude that the residuals are not normal when your sample size is large. This is why it's often easier to just use graphical methods like a Q-Q plot to check this assumption.



Assumption 4: Normality (3)

- If the normality assumption is violated:
 Verify that any outliers aren't having a huge impact on the distribution. If there are outliers present, make sure that they are real values and that they aren't data entry errors.
 - You can apply a nonlinear transformation to the independent and/or dependent variable. Common examples include taking the log, the square root, or the reciprocal of the independent and/or dependent variable.

Process • Process

Example 1. Three Species of Iris (1)

- The Iris Dataset contains four features (length and width of sepals and petals) of 50 samples of three species of Iris (Iris setosa, Iris virginica and Iris versicolor).
- The famous (Fisher's or Anderson's) iris data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris.
- Dataset: iris_1.csv

Example 1. Three Species of Iris (2)

• Code Book

	Column		Note
1	Length of Sepals		
2	Width of Sepals		
3	Length of Petals		
4	Width of Petals		
5	class	Iris setosa	
		Iris virginica	
		Iris versicolor	
6	class1	1: Iris setosa	
		2: Iris virginica	
		3: Iris versicolor	
7	class1_1	1: Iris setosa	
		0: Not Iris setosa	
8	class1_2	1: Iris virginica	
		0: Not Iris virginica	
9	Class1_3	1: Iris versicolor	
		0: Not Iris versicolor	

Example 1. Three Species of Iris (Step 1. Business Understanding)

· Business understanding

-Length of Sepals [sepal_length] Width of Petals [petal_width] -Width of Sepals [sepal_width] -Length of Petals [petal_length]

Example 1. Three species of Iris (Step 2. Data Understanding 1)

- #Open File
- from google.colab import drive
- drive.mount('/content/MyGoogleDrive')
- import pandas df=pandas.read_csv('/content/MyGoogleDrive/My Drive/iris_1.csv') df

Example 1. Three species of Iris (Step 2. Data Understanding 2)

- df.info() df.describe()

Example 1. Three species of Iris (Step 3. Data Preparation 1)

- df.drop_duplicates()
- df.dropna(how='any')
- $\bullet \ df['sepal_length'].fillna(value=df['sepal_length'].mean(), \ inplace=True)\\$

Example 1. Three species of Iris (Step 3. Data Preparation 2)

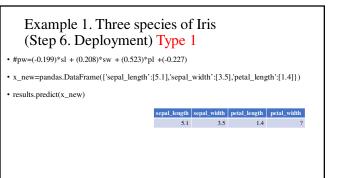
- # Split the dataset into training and testing sets
- from sklearn.model_selection import train_test_split
- $\bullet \ x = df[['sepal_length', 'sepal_width', 'petal_length']] \\$
- y=df['petal_width']
- x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 0)
- data_train=pandas.concat([x_train,y_train],axis=1)
- data_test=pandas.concat([x_test,y_test],axis=1)

Example 1. Three species of Iris (Step 4. Modeling) Type 1

- ### TYPE 1
 import statsmodels.formula.api as smf
- $\bullet \ \ model = smf.ols(formula = 'petal_width sepal_length + sepal_width + petal_length', \ \ data = \frac{df}{df})$
- results=model.fit() results.summary()

Example 1. Three species of Iris (Step 5. Evaluation) Type 1

• Evaluation



Example 1. Three species of Iris (Step 4. Modeling) Type 2 • ### TYPE 2 • from sklearn import linear_model lm2=linear_model.LinearRegression() lm2.fit(x_train,y_train) print(lm2.coef_)print(lm2.intercept_)

Example 1. Three species of Iris (Step 5. Evaluation) Type 2

- # the coefficient of determination, or R2
- r2 = lm2.score(x_train, y_train)
- pp = lm2.score(x_test, y_test)
- print("R2:", r2)
- print("The model's prediction performance:",pp)

Example 1. Three species of Iris (Step 6. Deployment) Type 2

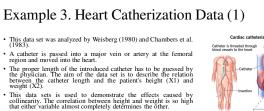
- #pw=(-0.199)*sl + (0.208)*sw + (0.523)*pl +(-0.227)
- $\bullet \ x_new=pandas. DataFrame(\{'sepal_length': [5.1], 'sepal_width': [3.5], 'petal_length': [1.4]\})$
- lm2.predict(x_new)

sepal_length | sepal_width | petal_length | petal_width

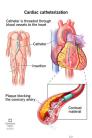
Example 2. The Heights of Children and Their **Parents**

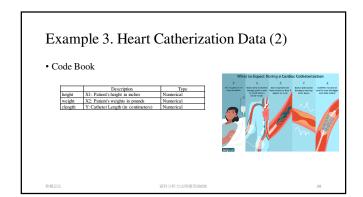
- The table below gives data based on the famous 1885 study of Francis Galton exploring the relationship between the heights of adult children and the heights of their parents.
- Dataset: Galton.csv
 Family: The family that the child belongs to, labeled from 1 to 204 and 136A
 Father: The father's height, in inches
 Mother: The mother's height, in inches
 Gender: The gender of the child, in inches
 Gender: The gender of the child, in inches
 Kids: The number of kids in the family of the child
- Source: http://www.randomservices.org/random/data/index.html

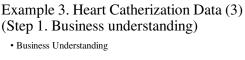
Example 2. The Heights of Children and Their **Parents** (Step 1. Business understanding) · Business understanding -The father's height, in inches [Father]
-The mother's height, in inches [Mother]
-The gender of the child [Gender1]
-The number of kids in the family of the child [Kids] The height of the child, in inches [Height]



• Dataset: heart01.csv







-Patient's height in inches [height] -Patient's weights in pounds [weight]

Example 4. The Weight of Penguins (1)

The dataset contains 333 instances of penguins from three species (classes), Adelie, Chinstrap, and Gentoo. The Adelie species contains 146 instances of penguins, Chinstrap has 68, and Gentoo has 119.

• Dataset: penguins_size1.csv

Example 4. The Weight of Penguins (2)

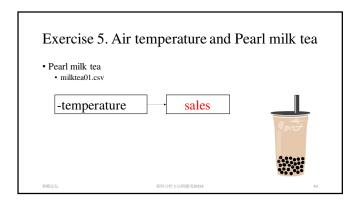
• Code Book

Feature	Description	Type
species	Adelie, Chinstrap, or Gentoo	Categorical
species I	1: Adelie, 2: Chinstrap, or 3:Gentoo	
island		Categorical
	in the Palmer Archipelago (Antarctica) where the	
	penguin was found and measured.	
island l	1: Dream, 2: Torgersen, or 3: Biscoe	
culmen_length_mm	The length of the penguin's culmen in millimeters.	Numerical
culmen_depth_mm	The depth of the penguin's culmen in millimeters.	Numerical
flipper_length_mm	The length of the penguin's flippers in millimeters.	Numerical
body_mass_g	The body mass of the penguin in grams.	Numerical
sex	The sex (MALE, FEMALE) of the penguin.	Categorical
sexl	1: MALE, 0:FEMALE	
species I_I	1: Adelie	
	0: Not Adelie	
species 1_2	1: Chinstrap	
	0: Not Chinstrap	
species 1_3	1: Gentoo	
	0: Not Gentoo	

Example 4. The Weight of Penguins (Step 1. Business understanding)

• Business Understanding

-culmen_length_mm -culmen_depth_mm -flipper_length_mm



Note: Evaluation

- \bullet .score() returns the coefficient of determination, or $R^2,$ for the data passed.
- Its maximum is 1.
- \bullet The higher the R^2 value, the better the fit.
- In this case, the training data yields a slightly higher coefficient.
- The R² calculated with test data is an unbiased measure of your model's prediction performance.
- Source: https://realpython.com/train-test-split-python-data/

4. Nearest Neighbor Analysis

宜弘 資料分析方法與應用203

Course Outline

- K-Nearest Neighbor
- The Advantages of KNN Algorithm
- The Disadvantages of KNN Algorithm
- · Significance of k
- How to decide the value of k

0相至5人

DELCARE THE PERSON NAMED IN COLUMN TO PROPERTY OF THE PERSON NAMED IN COLUMN TO PERSON NAMED IN

K-Nearest Neighbor (1)

- K-Nearest Neighbour is one of the simplest Machine Learning algorithms based on Supervised Learning technique.
- K-NN algorithm assumes the similarity between the new case/data and available cases and put the new case into the category that is most similar to the available enterprise
- K-NN algorithm stores all the available data and classifies a new data point based on the similarity. This means when new data appears then it can be easily classified into a well suite category by using K-NN algorithm.

0#EE

資料分析方法與應用2025

K-Nearest Neighbor (2)

- K-NN algorithm can be used for Regression as well as for Classification but mostly it is used for the Classification problems.
- K-NN is a non-parametric algorithm, which means it does not make any assumption on underlying data.
- It is also called a lazy learner algorithm because it does not learn from the training set immediately instead it stores the dataset and at the time of classification, it performs an action on the dataset.

OWNER

資料分析方法與應用2025E

K-Nearest Neighbor (3)

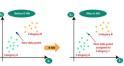
- KNN algorithm at the training phase just stores the dataset and when it gets new data, then it classifies that data into a category that is much similar to the new data.
- Example: Suppose, we have an image of a creature that looks similar to cat and dog, but we want to know either it is a cat or dog. So for this identification, we can use the KNN algorithm, as it works on a similarity measure. Our KNN model will find the similar features of the new data set to the cats and dogs images and based on the most similar features it will put it in either cat or dog category.

O RESERVE

資料分析方法與應用2025E

Why do we need a K-NN Algorithm?

- Suppose there are two categories, i.e., Category A and Category B, and we have a new data point x1, so this data point will lie in which of these categories. To solve this type of problem, we need a K-NN algorithm.
- With the help of K-NN, we can easily identify the category or class of a particular dataset. Consider the below diagram:



oleren.

分析方法與應用2025E

6

How does K-NN work? (1)

1

- Step 1: Select the number K of the neighbors
- Step 2: Calculate the Euclidean distance of K number of neighbors
- Step 3: Take the K nearest neighbors as per the calculated Euclidean distance.
- Step 4: Among these k neighbors, count the number of the data points in each
- Step 5: Assign the new data points to that category for which the number of the
- Step 6: Our model is ready.

How does K-NN work? (2) • Suppose we have a new data point and we need to put it in the required category. Consider the below image:

How does K-NN work? (3)

- Firstly, we will choose the number of neighbors, so we will choose the k=5.
- Next, we will calculate the Euclidean distance between the data points. The Euclidean distance is the distance between two points, which we have already studied in geometry. It can be calculated as:

How does K-NN work? (4)

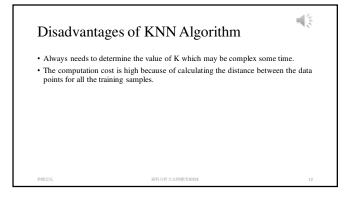
- ullet By calculating the Euclidean distance we got the nearest neighbors, as three nearest neighbors in category A and two nearest neighbors in category B.
- As we can see the 3 nearest neighbors are from category A, hence this new data point must belong to category A.

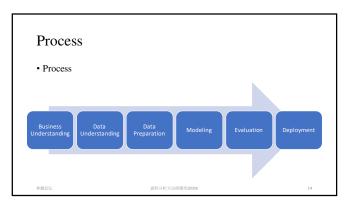
How to select the value of K in the K-NN ◀§ Algorithm?

- There is no particular way to determine the best value for "K", so we need to try some values to find the best out of them. The most preferred value for K is 5.
- A very low value for K such as K=1 or K=2, can be noisy and lead to the effects of
- Large values for K are good, but it may find some difficulties.

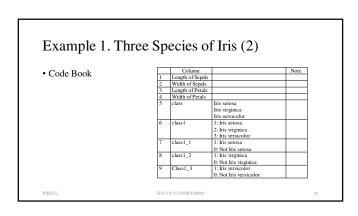
- It is simple to implement.
- It is robust to the noisy training data
- It can be more effective if the training data is large.

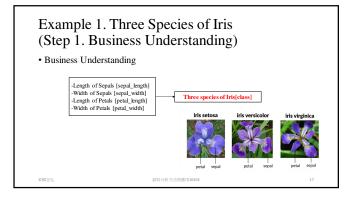
Advantages of KNN Algorithm

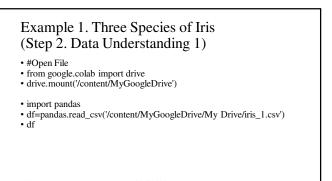




Example 1. Three Species of Iris (1) The Iris Dataset contains four features (length and width of sepals and petals) of 50 samples of three species of Iris (Iris setosa, Iris virginica and Iris versicolor). The famous (Fisher's or Anderson's) iris data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris.





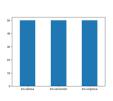


Example 1. Three Species of Iris (Step 2. Data Understanding 2)

- df.info()
- df.describe()
- df['class'].value_counts()

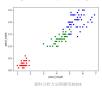
Example 1. Three Species of Iris (Step 2. Data Understanding 3)

• df['class'].value_counts().plot(kind='bar',rot=0)



Example 1. Three Species of Iris (Step 2. Data Understanding 4)

- df.plot(kind='scatter', x='petal_length', y='petal_width', c='class_color')



Example 1. Three Species of Iris (Step 3. Data Preparation 1)

- df.drop_duplicates()
- $\begin{tabular}{ll} \bullet df.dropna(how='any') \\ \bullet df['sepal_length'].fillna(value=df['sepal_length'].mean(), inplace=True) \\ \end{tabular}$

Example 1. Three Species of Iris (Step 3. Data Preparation 2)

- # Split the dataset into training and testing sets from sklearn.model_selection import train_test_split

- x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 0)
- data_train=pandas.concat([x_train,y_train],axis=1)
 data_test=pandas.concat([x_test,y_test],axis=1)

Example 1. Three Species of Iris (Step 4. Modeling 1)

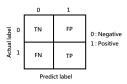
- from sklearn.neighbors import KNeighborsClassifier
- my_knn=KNeighborsClassifier(n_neighbors=3)
- my_knn.fit(x_train,y_train)
- my_knn.score(x_test,y_test)

Example 1. Three Species of Iris (Step 4. Modeling 2)

- from sklearn.metrics import accuracy_score
- pred= my_knn.predict(x_test)
- accuracy_score(y_test,pred)

Example 1. Three Species of Iris (Step 4. Modeling 3)

- #Confusion Matrix
- · from sklearn.metrics import confusion_matrix
- pred= mv knn.predict(x test)
- confusion_matrix(y_test,pred)



Example 1. Three Species of Iris (Step 5. Evaluation 1)

- from sklearn.neighbors import KNeighborsClassifier
- for k in range(3,11):
 my_knn=KNeighborsClassifier(n_neighbors=k)
 my_knn.fit(x_train,y_train)
- ac= my_ knn.score(x_test,y_test) print('k=',k,' ',acc)

Example 1. Three Species of Iris (Step 5. Evaluation 2)

- from sklearn.neighbors import KNeighborsClassifier import pandas
- import pandas
- myscore=[]
- for k in range(3,11):
 my_knn=KNeighborsClassifier(n_neighbors=k)
 my_knn.fit(x_train,y_train)
 myscore.append(my_knn.score(x_test,y_test))

- df_knn=pandas.DataFrame(myscore)
 df_knn.index=[3,4,5,6,7,8,9,10]
 df_knn.plot(kind="line", grid=True, legend=False)

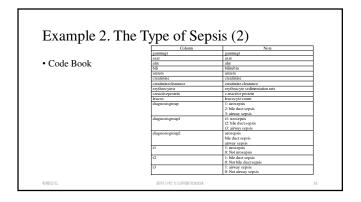
Example 1. Three Species of Iris (Step 6. Deployment)

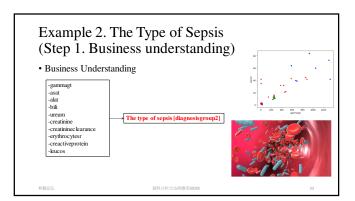
- # k=4 is best!
- from sklearn.neighbors import KNeighborsClassifier
- best_knn=KNeighborsClassifier(n_neighbors=4)
- best_knn.fit(x_train, y_train)
- x_new=[[5.1, 3.5, 1.4, 0.2],[7, 3.2, 4.7, 1.4],[6.3, 3.3, 6, 2.5]]
- best_knn.predict(x_new)

Example 2. The Type of Sepsis (1)

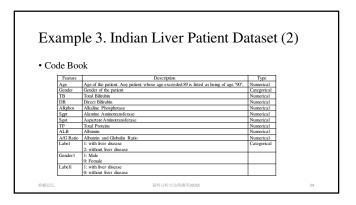
Predict the type of sepsis (urosepsis, bile duct sepsis, and airway sepsis) based on the laboratory screenings of 45 patients.

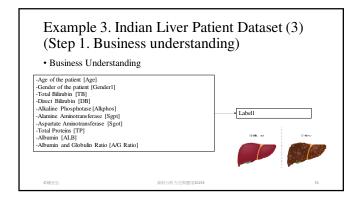
- Dataset: sepsis_1.csv
- Source: https://rstudio-pubs-static.s3.amazonaws.com/200568_9c836d5f0337451c8841e707395c1ae1.html



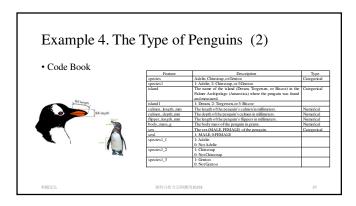


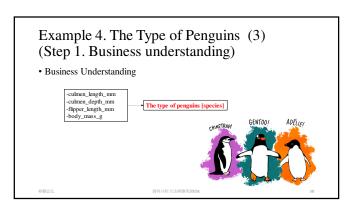
Example 3. Indian Liver Patient Dataset (1) Death by liver cirrhosis continues to increase, given the increase in alcohol consumption rates, chronic hepatitis infections, and obesity-related four disease. Notortholated fig. 1 high mortality of this disease, her diseases do not affect all sub-populations equals. The early detection for pathology is a determinant of patient outcomes, yet female patients appear to be marginalized when it comes to early diagnosis of here pathologies. The dataset comprises 584 patient records collected from the NorthEast of Andrra Pradesh, India. The prediction task is to determine whether a patient suffers from liver disease based on the information about several biochemical markers, including albumin and other engines required for metabolsun. This data set contains records of 416 patient adaptosed with liver disease and 167 patients without liver disease. This information is contained and the second of 146 patient and disposed of 146 patient without liver disease. This information is contained that the patient of the p

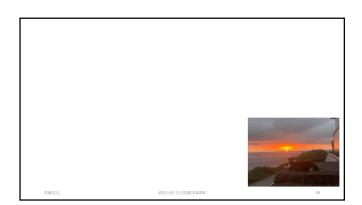


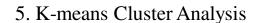


Example 4. The Type of Penguins (1) • The dataset contains 333 instances of penguins from three species (classes), Adelie, Chinstrap, and Gentoo. The Adelie species contains 146 instances of penguins, Chinstrap has 68, and Gentoo has 119. • Dataset: penguins_size1.csv









Course Outline

- K-means Clustering
- Key Features of K-means Clustering
- · Limitations of K-means Clustering
- Disadvantages of K-means Clustering
- Expectation-Maximization: K-means Algorithm
- Working of K-means Algorithm
- · Stopping Criteria for K-Means Clustering
- K-means vs Hierarchical Clustering

1

K-means Cluster Analysis

- K-means algorithm explores for a preplanned number of clusters in an un-labelled multidimensional dataset, it concludes this via an easy interpretation of how an optimized cluster can be expressed.
- Primarily the concept would be in two steps:
 - Firstly, the cluster center is the arithmetic mean (AM) of all the data points associated with the cluster.
 - Secondly, each point is adjoint to its cluster center in comparison to other cluster centers. These two interpretations are the foundation of the k-means clustering model.

1

13

K-means Cluster Analysis

- You can take the centre as a data point that outlines the means of the cluster, also it might not possibly be a member of the dataset.
 In simple terms, k-means clustering enables us to cluster the data into several groups by detecting the distinct categories of groups in the unlabelled datasets by itself, even without the necessity of training of data.
- This is the centroid-based algorithm such that each cluster is connected to a centroid while following the objective to minimize the sum of distances between the data points and their corresponding clusters.
- As an input, the algorithm consumes an unlabelled dataset, splits the complete dataset into k-number of clusters, and iterates the process to meet the right clusters, and the value of k should be predetermined.

The K-means Algorithm

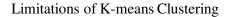
- · Specifically performing two tasks, the k-means algorithm
 - Calculates the correct value of K-center points or centroids by an iterative
 - · Assigns every data point to its nearest k-center, and the data points, closer to a particular k-center, make a cluster. Therefore, data points, in each cluster, have some similarities and far apart from other clusters.

· It is very smooth in terms of interpretation and resolution.

· For a large number of variables present in the dataset, K-means operates quicker than Hierarchical clustering.

Key Features of K-means Clustering

- While redetermining the cluster centre, an instance can modify the cluster.
- K-means reforms compact clusters.
- It can work on unlabeled numerical data.
- Moreover, it is fast, robust and uncomplicated to understand and yields the best outcomes when datasets are well distinctive (thoroughly separated) from each



- Sometimes, it is quite tough to forecast the number of clusters, or the value of k.
- The output is highly influenced by original input, for example, the number of
- · An array of data substantially hits the concluding outcomes.
- In some cases, clusters show complex spatial views, then executing clustering is not a good choice.
- Also, rescaling is sometimes conscious, it can't be done by normalization or standardization of data points, the output gets changed entirely.

WESA

資料分析方法與應用2025

Disadvantages of K-means Clustering

- The algorithm demands for the inferred specification of the number of cluster/ centers.
- An algorithm goes down for non-linear sets of data and unable to deal with noisy data and outliers.
- It is not directly applicable to categorical data since only operatable when mean is provided.
- · Also, Euclidean distance can weight unequally the underlying factors.
- The algorithm is not variant to non-linear transformation, i.e provides different results with different portrayals of data.

O#IEE/

資料分析方法與應用2025E

Expectation-Maximization: K-means Algorithm (1)

- K-Means is just the Expectation-Maximization (EM) algorithm, It is a
 persuasive algorithm that exhibits a variety of context in data science,
 the E-M approach incorporates two parts in its procedure;
 - To assume some cluster centres,
 - · Re-run as far as transformed;
 - E-Step: To appoint data points to the closest cluster centre,
 - M-Step: To introduce the cluster centres to the mean.

080355

資料分析方法與應用2025

9

Expectation-Maximization: K-means Algorithm (2)

- Where the E-step is the Expectation step, it comprises upgrading forecasts of associating the data point with the respective cluster.
- of And, M-step is the Maximization step, it includes maximizing some features that specify the region of the cluster centres, for this maximization, is expressed by considering the mean of the data points of each cluster.
- In account with some critical possibilities, each reiteration of E-step and M-step algorithm will always yield in terms of improved estimation of clusters' characteristics.
- K-means utilize an iterative procedure to yield its final clustering based on the number of predefined clusters, as per need according to the dataset and represented by the variable K.
- For instance, if K is set to 3 (k3), then the dataset would be categorized in 3 clusters if k is equal to 4, then the number of clusters will be 4 and so on.

O相当

資料分析方法與應用2025E

Expectation-Maximization: K-means Algorithm (3)

- The fundamental aim is to define k centres, one for each cluster, these centres must be located in a sharp manner because of the various allocation causes different outcomes. So, it would be best to put them as far away as possible from each other.
- Also, The maximum number of plausible clusters will be the same as the total number of observations/features present in the dataset.

Working of K-means Algorithm

- K-centres are modelled randomly in accordance with the present value of K.
- K-means assigms each data point in the dataset to the adjacent centre and attempts to curtail Euclidean distance between data points. Data points are assumed to be present in the peculiar cluster as if it is nearby to centre to that cluster than any other cluster centre.
- After that, k-means determines the centre by accounting the mean of all data points referred to that cluster centre. It reduces the complete variance of the intra-clusters with respect to the prior step. Here, the "means" defines the average of data points and identifies a new centre in the method of k-means clustering.
- The algorithm gets repeated among the steps 2 and 3 till some paradigm will be achieved such as the sum of
 distances in between data points and their respective centres are diminished, an appropriate number of
 iterations is attained, no variation in the value of cluster centre on change in the cluster due to data points.

OMES.

資料分析方法與應用2025E

11

L 資料分析方法與應用20

12

Stopping Criteria for K-Means Clustering

- If the centroids of the newly built clusters are not changing
 An algorithm can be brought to an end if the centroids of the newly constructed clusters are not altering. Even after multiple iterations, if the obtained centroids are same for all the clusters, it can be concluded that the algorithm is not learning any new pattern and gives a sign to stop its execution/training to addaset.
- If data points remain in the same cluster
 The training process can also be halt if the data points stay in the same cluster even after the training the algorithm for multiple iterations.
- If the maximum number of iterations have achieved
 - At last, the training on a dataset can also be stopped if the maximum number of iterations is attained, for example, assume the number of iterations has set as 200, then the process will be repeated for 200 times (200 iterations) before coming to end.

K-means vs Hierarchical Clustering

- K-means clustering produces a specific number of clusters for the disarranged and flat dataset, where Hierarchical clustering builds a hierarchy of clusters, not for just a partition of objects under various clustering methods and applications.
- K-means can be used for categorical data and first converted into numeric by assigning rank, where Hierarchical clustering was selected for categorical data but due to its complexity, a new technique is considered to assign rank value to categorical features.
- K-means are highly sensitive to noise in the dataset and perform well than Hierarchical clustering where it is less sensitive to noise in a dataset.
- Performance of the K-Means algorithm increases as the RMSE decreases and the RMSE decreases as the number of clusters increases so the time of execution increases, in contrast to this, the performance of Hierarchical Custering is Ess.
- K-means are good for a large dataset and Hierarchical clustering is good for small datasets.

Final Words

- K-means clustering is the unsupervised machine learning algorithm that is part of a much deep pool of data techniques and operations in the realm of Data Science.
 It is the fastest and most efficient algorithm to categorize data points into groups even when very little information is available about data.
- · More on, similar to other unsupervised learning, it is necessary to understand the data before adopting which technique fits well on a given dataset to solve problems. Considering the correct algorithm, in return, can save time and efforts and assist in obtaining more accurate results.

Process Process

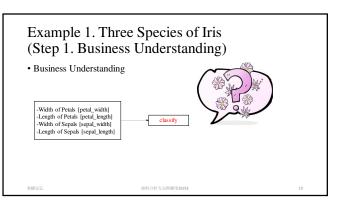
Example 1. Three Species of Iris (1)

- The Iris Dataset contains four features (length and width of sepals and petals) of 50 samples of three species of Iris (Iris setosa, Iris virginica and Iris versicolor).
- The famous (Fisher's or Anderson's) iris data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris.
- Dataset: iris_1.csv

Example 1. Three Species of Iris (2)

• Code Book

	Column		Note
1	Length of Sepals		
2	Width of Sepals		
3	Length of Petals		
4	Width of Petals		
5-	elass-	Iris setosa	
		Iris virginica	
		Iris versicolor	
6	elass I	1: Iris setosa	
		2: Iris-virginica	
1		3: Iris versicolor	
7	elass l_l	1: Iris setosa	
		0: Not Iris setosa	
7	class1_2	1: Iris virginica	
		0: Not Iris virginica	
9	Class1_3	1: Iris versicolor	
		0: Not Iris versicolor	



Example 1. Three Species of Iris (Step 2. Data Understanding 1)

- #Open File
- from google.colab import drive
- drive.mount('/content/MyGoogleDrive')
- import pandas
- df=pandas.read_csv('/content/MyGoogleDrive/My Drive/iris_1.csv')
 df

Example 1. Three Species of Iris (Step 2. Data Understanding 2)

- df.info() df.describe()

Example 1. Three Species of Iris (Step 3. Data Preparation 1)

- df.drop_duplicates()
- $\label{eq:continuous} \begin{array}{ll} \bullet \ df.dropna(how='any') \\ \bullet \ df['sepal_length'].fillna(value=df['sepal_length'].mean(), \ inplace=True) \\ \end{array}$

Example 1. Three Species of Iris (Step 3. Data Preparation 2)

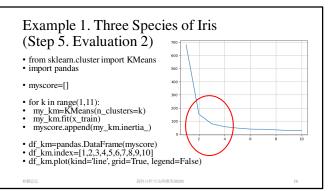
- $\bullet \ x_train=df[['sepal_length', 'sepal_width', 'petal_length', 'petal_width']]$
- $\bullet \ x_train$

Example 1. Three Species of Iris (Step 4. Modeling)

- from sklearn.cluster import KMeans
- my_km=KMeans(n_clusters=3)
- my_km.fit(x_train)
 my_km.inertia_ #small is good

Example 1. Three Species of Iris (Step 5. Evaluation 1)

- from sklearn.cluster import KMeans
- for k in range(1,11): my_km=KMeans(n_clusters=k)
- my_km.fit(x_train)
 print('k=',k,'===>',my_km.inertia_) #small is good



Example 1. Three Species of Iris (Step 6. Deployment 1)

- # k=3 is better!
- best km=KMeans(n clusters=3)
- pred_y=best_km.fit_predict(x_train)
- pred_y

- fit(): Computes the centroids and assigns each data point to a cluster, but does not return the labels for each point.
- fit_predict() : Performs the same operations as fit() and also returns the labels for each data point.

Example 1. Three Species of Iris (Step 6. Deployment 2)

- df1=x_train.copy()
- df1['pred_y']=pred_y
- df1

Example 1. Three Species of Iris

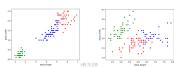
• pred_y_color={0:'r',1:'g',2:'b'}

• df1['y_color']=df1['pred_y'].map(pred_y_color)

(Step 6. Deployment 3)

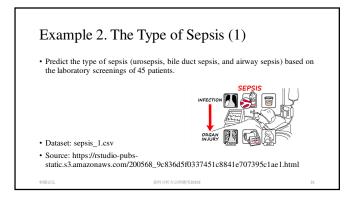
 $\bullet \ df1.plot(kind='scatter',x='petal_length',y='petal_width',c=df1['y_color'])\\$

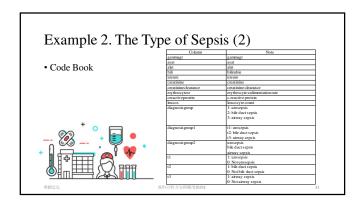
 $\bullet \ df1.plot(kind='scatter', x='sepal_length', y='sepal_width', c=df1['y_color'])\\$

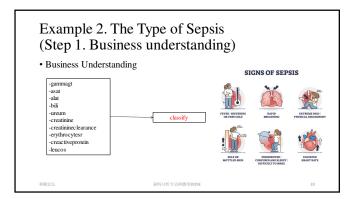


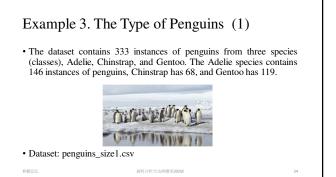
Example 1. Three Species of Iris (Step 6. Deployment 4)

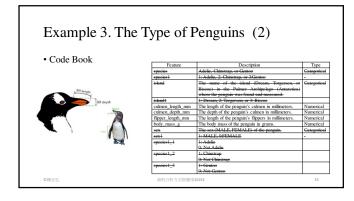
• x_new=[[6.7,3.0,5.2,2.3],[5.1,3.5,1.4,0.2],[5.9,3.0,5.1,1.8]] • best_km.predict(x_new)

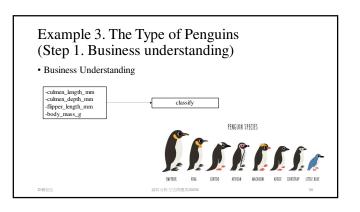


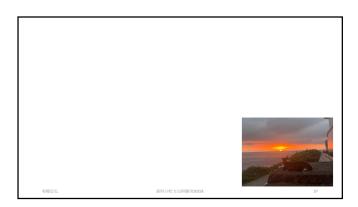












6. Multilayer Perceptron

Course Outline

1

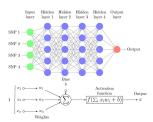
- Multilayer Perceptron
- MLP Diagram
- Neural Network Models in Keras
- Model Compilation

Multilayer Perceptron

- · A multilayer perceptron (MLP) is a feedforward artificial neural network that generates a set of outputs from a set of inputs.
- An MLP is characterized by several layers of input nodes connected as a directed graph between the input and output layers.
- MLP uses backpropagation for training the network.
- MLP is a deep learning method.

MLP Diagram

- Multi-Layer Perceptron (MLP) diagram with four hidden layers and a collection of single nucleotide polymorphisms (SNPs) as input and illustrates a basic "neuron" with n inputs.
- One neuron is the result of applying the nonlinear transformations of linear combinations (xi, wi, and biases b).



Neural Network Models in Keras

- · Create a Sequential model and add the layers in the order of the computation you wish to perform.
 - from keras.models import Sequential
 - model = Sequential()
 - model.add(...)
 - model.add(...)
 - model.add(...)

Model Layers: Layer Types

- Dense: Fully connected layer and the most common type of layer used on multi-layer perceptron models
 The input is XXX features, and the output is XXX neurons, that is, XXX regression lines.

 - Output XXX neurons and convert them into probabilities through the softmax activation function, that is, predicted probabilities from 0 to 9. The one with the highest probability is selected as the predicted value.
- Dropout: Apply dropout to the model, setting a fraction of inputs to zero in an effort to reduce overfitting
 Randomly discard XXX% of neurons during the training cycle to correct the overfitting phenomenon.
- Concatenate: Combine the outputs from multiple layers as input to a single

Model Layers: Weight Initialization

- The type of initialization used for a layer is specified in the kernel_initializer argument.
- random_uniform: Weights are initialized to small uniformly random values between -0.05 and 0.05.
- \bullet random_normal: Weights are initialized to small Gaussian random values (zero mean and standard deviation of 0.05).
- zeros: All weights are set to zero values.

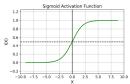
Model Layers: Activation Function

• deserialize(...): Returns activation function given a string identifier.
• elu(...): Exponential Linear Unit.
• exponential(...): Exponential activation function.
• gelu(...): Applies the Gaussian error linear unit (GELU) activation function.
• get(...): Applies the Gaussian error linear unit (GELU) activation function.
• get(...): Returns function.
• lard sigmoid(...): Hard sigmoid activation function.
• linear(...): Linear activation function (pass-through).
• relu(...): Applies the rectified linear unit activation function.
• selu(...): Scaled Exponential Linear Unit (SELU).
• serialize(...): Returns the string identifier of an activation function.
• sigmoid(...): Sigmoid activation function, sigmoid(x) = 1/(1 + exp(-x)).
• softmax(...): Softmax converts a vector of values to a probability distribution.
• softplus(...): Softplus activation function, softplus(x) = log(exp(x) + 1).
• softsign(...): Softsign activation function, softsign(x) = x / (abs(x) + 1).
• swish(...): Swish activation function, swish(x) = x * sigmoid(x).
• tanh(...): Hyperbolic tangent activation function.

Model Layers: Activation Function (sigmoid)

- sigmoid
 - Values are between [0,1] and the distribution is polarized, with most being either 0 or 1.
 - · Suitable for binary classification.

$$f(x) = \frac{1}{1+e^{-x}}$$



Model Layers: Activation Function (softmax)

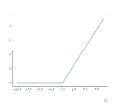
- softmax
 - Values are between [0,1] and the probabilities sum to 1.
 - Suitable for use in multiple categories.

Softmax Function

Model Layers: Activation Function (relu)

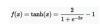
- - Negative values between [0,∞] are ignored.

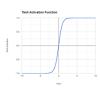
$$f(x) = max(x, 0)$$



Model Layers: Activation Function (tanh)

- - Similar to sigmoid, but the value is between [-1,1].
 - · The conduction has a negative value





Model Compilation: Model Loss Functions

- The loss function, also called the objective function, is the evaluation of the model used by the optimizer to navigate the weight space.
- 'mse': for mean squared error
- 'binary_crossentropy': for binary logarithmic loss (logloss)
- 'categorical_crossentropy': for multi-class logarithmic loss (logloss)

Model Compilation: Model Optimizers

- The optimizer is the search technique used to update weights in your
- · SGD: stochastic gradient descent, with support for momentum
- RMSprop: adaptive learning rate optimization method proposed by Geoff Hinton
- · Adam: Adaptive Moment Estimation (Adam) that also uses adaptive learning rates

Model Compilation: Model Metrics

- Keras Regression Metrics
 Mean Squared Error: mean_squared_error, MSE or mse
 Mean Absolute Error: mean_absolute_error, MAE, mae
 Mean Absolute Percentage Error: mean_absolute_percentage_error, MAPE, mape
 Cosine Proximity: cosine_proximity, cosine
- Keras Classification Metrics

 - Binary Accuracy: binary_accuracy, acc
 Categorical Accuracy: categorical_accuracy, acc
 Sparse Categorical Accuracy: sparse_categorical_accuracy
 Top k Categorical Accuracy: top_k_categorical_accuracy (requires you specify a k parameter)
 Sparse Top k Categorical Accuracy: sparse_top_k_categorical_accuracy (requires you specify a k parameter)

Process • Process

Example 1. Three Species of Iris (1)

- The Iris Dataset contains four features (length and width of sepals and petals) of 50 samples of three species of Iris (Iris setosa, Iris virginica and Iris versicolor).
- The famous (Fisher's or Anderson's) iris data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris.
- Dataset: iris_1.csv

Example 1. Three Species of Iris (2)

• Code Book

	Column		Note
1	Length of Sepals		
2	Width of Sepals		
3	Length of Petals		
1 2 3 4	Width of Petals		
5	class	Iris setosa	
		Iris virginica	
		Iris versicolor	
6	class1	1: Iris setosa	
		2: Iris virginica	
		3: Iris versicolor	
7	class1_1	1: Iris setosa	
		0: Not Iris setosa	
8	class1_2	1: Iris virginica	
		0: Not Iris virginica	
9	Class1_3	1: Iris versicolor	
		0: Not Iris versicolor	

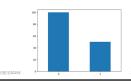
Example 1. Three Species of Iris (Step 1. Business Understanding) • Business Understanding -Width of Petals [petal_width] -Length of Sepals [sepal_length] -Width of Sepals [sepal_width] -Length of Petals [petal_length] Three species of Iris[class1_1](Iris-setosa) Three species of Iris[class1_2](Iris virginica)

Example 1. Three species of Iris (Step 2. Data Understanding 1)

- #Open File
- from google.colab import drive
- drive.mount('/content/MyGoogleDrive')
- · import pandas
- df=pandas.read_csv('/content/MyGoogleDrive/My Drive/iris_1.csv')
 df

Example 1. Three species of Iris (Step 2. Data Understanding 2) • df.info()

- df.describe()
- df['class1_1'].value_counts() df['class1_1'].value_counts().plot(kind='bar',rot=0)



Example 1. Three species of Iris (Step 3. Data Preparation 1)

- df.drop_duplicates()
- · df.dropna(how='any')
- $\bullet \ df['sepal_length']. fillna(value=df['sepal_length']. mean(), \ inplace=True)\\$

Example 1. Three species of Iris (Step 3. Data Preparation 2)

- from sklearn.model_selection import train_test_split
- y=df[['class1_1', 'class1_2','class1_3']]
- $\bullet \ x = df[['sepal_length', 'sepal_width', 'petal_length', 'petal_width']] \\$
- x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)

Example 1. Three species of Iris (Step 4. Modeling 1)

• model=Sequential()

- #Input layer with 4 inputs neurons
 #model.add(Dense(units=40, input_dins=4, kernel_initializer='uniform', activation='relu'))
 model.add(Dense(units=40, input_shape=(4), kernel_initializer='uniform', activation='relu'))
- #Hidden layer
 model.add(Dense(units=30, kernel_initializer='uniform', activation='relu'))
- #Output layer with 3 output neuron which will predict 1 or 0
 model.add(Dense(units=3, kernel_initializer='uniform', activation='sigmoid'))
- $\bullet \ \ model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])$
- print(model.summary())

Example 1. Three species of Iris (Step 4. Modeling 2)

 $\bullet \;\; train_history = model. fit (x = x_train, \;\; y = y_train, \;\; validation_split = 0.1, \;\; epochs = 100, \; batch_size = 30, \;\; verbose = 2)$

08000

資料分析方法與應用2025E

Example 1. Three species of Iris (Step 5. Evaluation 1)

- # test loss, test acc
- $\bullet \ score=model.evaluate(x=x_test,y=y_test)\\$
- score

ONESS

資料分析方法與應用2025E

Example 1. Three species of Iris (Step 5. Evaluation 2: test vs validation)

- The validation set is used during the training phase of the model to provide an unbiased evaluation of the model's performance and to fine-tune the model's parameters.
- The test set is used after the model has been fully trained to assess the model's performance on completely unseen data.

OWES

資料分析方法與應用2025E

27

Example 1. Three species of Iris (Step 5. Evaluation 2: Training loss)

- Training loss is the calculated error when the model makes predictions on the training data.
- It is updated after every forward and backward pass of the model during the training process.
- The loss typically decreases over time as the model learns to map inputs to outputs more accurately.
- A loss function (such as Mean Squared Error, Cross-Entropy Loss, etc.) quantifies the difference between the predicted and actual labels.

ONE

資料分析方法與應用2025E

Example 1. Three species of Iris (Step 5. Evaluation 2: Validation loss)

- Validation loss evaluates the model's performance on a separate dataset (validation set) that the model has never seen during training.
- This metric provides an indication of how well the model generalizes to new data.
- Validation loss is computed at the end of each epoch during training but is not used to update the model weights.

ORIEN.

資料分析方法與應用2025E

29

Example 1. Three species of Iris (Step 5. Evaluation 2: Training/Validation Loss)

 \bullet import matplotlib.pyplot as plt

• plt.plot(train_history.history["loss"])

- $\bullet \ plt.plot(train_history.history["val_loss"]) \\$
- plt.title('Train History')
- plt.ylabel('train')
- plt.xlabel('Epoch')
- plt.legend(['train', 'validation'], loc='center right')
- plt.show()

0相宜弘

資料分析方法與應用2025E

30

Example 1. Three species of Iris (Step 5. Evaluation 3: Training/Validation Accuracy) • import matplotlib.pyplot as plt $\bullet \ plt.plot(train_history.history["accuracy"])\\$ • plt.plot(train_history.history["val_accuracy"]) • plt.title('Train History') • plt.ylabel('train') • plt.xlabel('Epoch') • plt.legend(['train', 'validation'], loc='center right') • plt.show()

Example 1. Three species of Iris (Step 5. Evaluation 4) • y_test_pred=model.predict(x_test) y_test_pred

Example 1. Three species of Iris (Step 6. Deployment)

- x_new=[[5.1,3.5,1.4,0.2],[7.0,3.2,4.7,1.4],[6.3,3.3,6.0,2.5]]
- y_new=model.predict(x_new)
 y_new

Example 1b. Three Species of Iris (1)

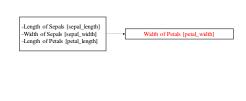
- The Iris Dataset contains four features (length and width of sepals and petals) of 50 samples of three species of Iris (Iris setosa, Iris virginica and Iris versicolor).
- The famous (Fisher's or Anderson's) iris data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris.
- Dataset: iris_1.csv

Example 1b. Three Species of Iris (2)

• Code Book

Example 1b. Three Species of Iris (Step 1. Business Understanding)

· Business Understanding



Example 1b. Three species of Iris (Step 2. Data Understanding 1)

- #Open File
 from google.colab import drive
 drive.mount('/content/MyGoogleDrive')

- ・ import pandas ・ df=pandas.read_csv('kontent/MyGoogleDrive/My Drive/資料分析方法與應用/iris_1.csv') ・ df

Example 1b. Three species of Iris (Step 2. Data Understanding 2)

- df.info() df.describe()

Example 1b. Three species of Iris (Step 3. Data Preparation 1)

- df.drop_duplicates()
- df.dropna(how='any')
- $\bullet \ df['sepal_length'].fillna(value=df['sepal_length'].mean(), \ inplace=True)\\$

Example 1b. Three species of Iris (Step 3. Data Preparation 2)

- from sklearn.model_selection import train_test_split
- x=df[['sepal_length','sepal_width','petal_length']]
- $y=df['petal_width']$
- x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)

Example 1b. Three species of Iris (Step 4. Modeling 1)

- from keras.models import Sequential
 from keras.layers import Dense, Dropout
- model=Sequential()
- #Input layer with 3 inputs neurons model.add(Dense(units=40, input_dim=3, kernel_initializer='random_uniform', activation='relu')) model.add(Dropout(0.5))
- #Hidden laver
 model.add(Dense(units=30, kernel_initializer='random_uniform', activation='relu'))
 model.add(Dropout(0.5))
- #Output layer with 1 output neuron which will predict 1 or 0
 model.add(Dense(units=1, kernel_initializer='random_uniform'))
- $\bullet \ \ model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mse'])$
- print(model.summary())

Example 1b. Three species of Iris (Step 4. Modeling 2)

• train_history=model.fit(x=x_train, y=y_train, validation_split=0.1, epochs=100, batch_size=30, verbose=2)

Example 1b. Three species of Iris (Step 5. Evaluation 1)

- # mse, mse
- $\bullet \ score=model.evaluate(x=x_test,y=y_test)\\$
- score

Example 1b. Three species of Iris (Step 5. Evaluation 2: MSE)

- import matplotlib.pyplot as plt
- plt.plot(train_history.history["mse"])
- plt.plot(train_history.history["val_mse"])
- plt.title('Train History')
- plt.ylabel('train')
- plt.xlabel('Epoch')
- plt.legend(['train', 'validation'], loc='center right')
- plt.show()

Example 1b. Three species of Iris (Step 5. Evaluation 4)

- y_test_pred=model.predict(x_test)
- y_test_pred

Example 1b. Three species of Iris (Step 6. Deployment)

- x_new=[[5.1,3.5,1.4],[7.0,3.2,4.7],[6.3,3.3,6.0]] x_new=pandas.DataFrame(x_new)
- y_test_pred=model.predict(x_new)
 y_test_pred

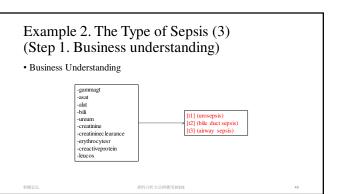
Example 2. The Type of Sepsis (1)

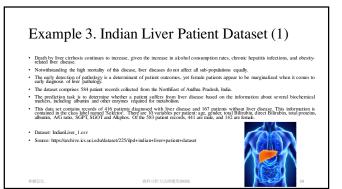
Predict the type of sepsis (urosepsis, bile duct sepsis, and airway sepsis) based on the laboratory screenings of 45 patients.

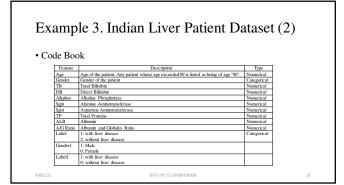
- Source: https://rstudio-pubs-static.s3.amazonaws.com/200568_9c836d5f0337451c8841e707395c1ae1.html

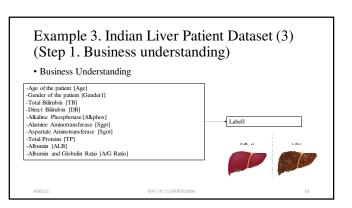
Example 2. The Type of Sepsis (2) • Code Book

Column	Note	
gammagt	gammagt	
asat	asat	
alat	alat	
bili	bilirubin	
ureum	ureum	
creatinine	creatinine	
creatinineclearance	creatinine clearance	
erythrocytesr	erythrocyte sedimentation rate	
creactiveprotein	c-reactive protein	
leucos	leucocyte count	
diagnosis group	1: urosepsis 2: bile duct sepsis 3: airway sepsis	
diagnosis group l	t1: urosepsis t2: bile duct sepsis t3: airway sepsis	
diagnosis group2	urosepsis bile duct sepsis airway sepsis	
tl	1: urosepsis 0: Noturosepsis	
t2	1: bile duct sepsis 0: Not bile duct sepsis	
t3	1: airway sepsis 0: Notairway sepsis	

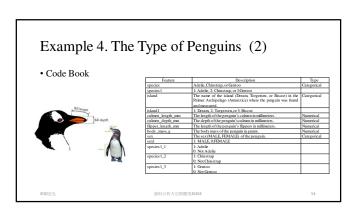




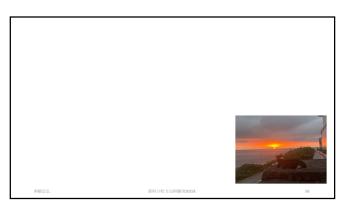




Example 4. The Type of Penguins (1) The dataset contains 333 instances of penguins from three species (classes), Adelie, Chinstrap, and Gentoo. The Adelie species contains 146 instances of penguins, Chinstrap has 68, and Gentoo has 119. Dataset: penguins_size1.csv







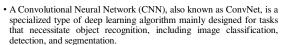
1

7. Convolutional Neural Network

Course Outline

- Convolutional Neural Network
- The importance of CNNs
- Key Components of a CNN

Convolutional Neural Network



· CNNs are employed in a variety of practical scenarios, such as autonomous vehicles, security camera systems, and others.

The importance of CNNs

1

- CNNs are distinguished from classic machine learning algorithms such as SVMs and decision trees by their ability to autonomously extract features at a large scale, bypassing the need for manual feature engineering and thereby enhancing efficiency.
- efficiency.

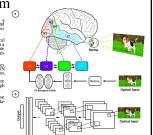
 The convolutional layers grant CNNs their translation-invariant characteristics, empowering them to identify and extract patterns and features from data irrespective of variations in position, orientation, scale, or translation.

 A variety of pre-trained CNN architectures, including VGG-16, ResNet50, Inceptionv3, and EfficientNet, have demonstrated top-tier performance. These models can be adapted to new tasks with relatively little data through a process known as fine-tuning.

 Beyond image classification tasks, CNNs are versatile and can be applied to a range of other domains, such as natural language processing, time series analysis, and speech recognition.

Inspiration Behind CNN and Parallels with The Human Visual System

- Multiple feature maps: At each stage of visual processing, there are many different feature maps extracted. CNNs mimic this through multiple filter maps in each convolution layer.

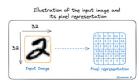


1 Key Components of a CNN · Convolutional layers • Rectified Linear Unit (ReLU for short) • Pooling layers · Fully connected layers

Convolution layers

- As the name suggests, the main mathematical task performed is called convolution, which is the application of a sliding window function to a matrix of pixels representing an image. The sliding function applied to the matrix is called kernel or filter, and both can be used interchangeably.
- In the convolution layer, several filters of equal size are applied, and each filter is used to recognize a specific pattern from the image, such as the curving of the digits, the edges, the whole shape of the digits, and more.
- more.

 Put simply, in the convolution layer, we use small grids (called filters or kernels) that move over the image. Each small grids like a mini maganlying glass filter and grids like a mini maganlying glass flavoures, or shapes. As it moves across the photo, it creates a new grid that highlights where it found these natterns.



Activation function

- A ReLU activation function is applied after each convolution operation. This function helps the network learn non-linear relationships between the features in the image, hence making the network more robust for identifying different patterns.
- · It also helps to mitigate the vanishing gradient problems.

Pooling layer

- The goal of the pooling layer is to pull the most significant features from the convoluted matrix. This is done by applying some aggregation operations, which reduce the dimension of the feature map (convoluted matrix), hence reducing the memory used while training the network. Pooling is also relevant for mitigating overfitting.
- The most common aggregation functions that can be applied are:

 Max pooling, which is the maximum value of the feature map

 - feature map

 Sum pooling corresponds to the sum of all the values of the feature map

 Average pooling is the average of all the values.

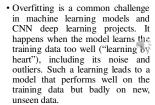
1

Application of max pooling with a stride of 2 using 2x2 filter

Fully connected layers

- · These layers are in the last layer of the convolutional neural network, and their inputs correspond to the flattened one-dimensional matrix generated by the last pooling layer.
- ReLU activations functions are applied to them for non-linearity.
- · Finally, a softmax prediction layer is used to generate probability values for each of the possible output labels, and the final label predicted is the one with the highest probability score.

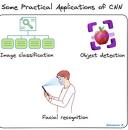
Overfitting and Regularization in CNNs



Practical Applications of CNNs

1

- Image classification: Convolutional neural networks are used for image categorization, where images are assigned to predefined categories. One use of such a scenario is automatic photo organization in social media platforms.
 Object detection: CNNs are able to identify and locate multiple objects within an image. This capability is crucial in multiple scenarios of shelf scanning in retail to identify out-of-stock items.
- Facial recognition: this is also one of the main industries of application of CNNs. For instance, this technology can be embedded into security systems for efficient control of access based on facial features.

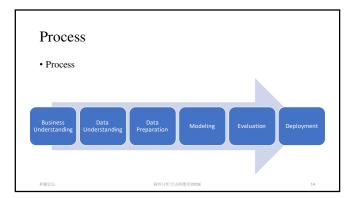


flow_from_directory()

- directory: The directory must be set to the path where your 'n' classes of folders are present.
- target_size: The target_size is the size of your input images, every image will be resized to this size. Ex: target_size=(256, 256).
- to this size. Ex. targe_size_250, 250).

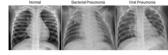
 color_mode: if the image is either black and white or grayscale set "grayscale" or if the image has three color channels, set "rgb". Ex: color_mode="rgb".

 batch_size: No. of images to be yielded from the generator per batch. Ex: batch_size=32.
- class_mode: Set "binary" if you have only two classes to predict, if not set to "categorical", in case if you're developing an Autoencoder system, both input and the output would probably be the same image, for this case set to "input".
- shuffle: Set True if you want to shuffle the order of the image that is being yielded, else set False. Ex: shuffle=True.
- seed: Random seed for applying random image augmentation and shuffling the order of the image.



Example 1. Chest X-Ray Images (Pneumonia) (1)

- The normal chest X-ray (left panel) depicts clear lungs without any areas of abnormal opacification in the image. Bacterial pneumonia (middle) typically exhibits a focal lobar consolidation, in this case in the right upper lobe (white arrows), whereas viral pneumonia (right) manifests with a more diffuse "interstitial" pattern in both lungs.
- ${\color{blue}\bullet}\ https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia}$
- Dataset: chest_xray_quarter



Example 1. Chest X-Ray Images (Pneumonia) (2)

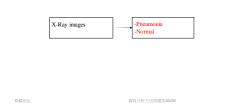
- The dataset is organized into 3 folders (train, test, val) and contains subfolders for each image category (Pneumonia/Normal). There are 5,863 X-Ray images (JPEG) and 2 categories (Pneumonia/Normal).
- Chest X-ray images (anterior-posterior) were selected from retrospective cohorts of pediatric patients of one to five years old from Guangzhou Women and Children's Medical Center, Guangzhou. All chest X-ray imaging was performed as part of patients' routine clinical care.

Example 1. Chest X-Ray Images (Pneumonia) (Step 0. GPU usage)

- Edit->Notebook settings->Hardware accelerator: T4 GPU
- · import tensorflow
- tensorflow.test.gpu_device_name()
- !nvidia-smi -L

Example 1. Chest X-Ray Images (Pneumonia) (Step 1. Business Understanding)

· Business Understanding



Example 1. Chest X-Ray Images (Pneumonia) (Step 2. Data Understanding)

• Data Understanding

Example 1. Chest X-Ray Images (Pneumonia) (Step 3. Data Preparation 1)

- # Open File
 from google.colab import drive
 drive.mount(/content/MyGoogleDrive')
- train_generator=ImageDataGenerator(rescale=1./255).flow_from_directory('/content/MyGoogleDrive/MyDrive/hest_wray_quarter/train', DrieChest, way_quinterhain; dis=256, 256), bulk; sin=32, costs and costs sin=25, costs and costs sin=25, costs and c
 - target_size=(256, 256), batch_size=32, class_mode='binary',

Example 1. Chest X-Ray Images (Pneumonia) (Step 3. Data Preparation 2)

- # Iterate through each generator to create the data sets with the train/test/val splits
- x_train, y_train = next(train_generator)
- x_test, y_test = next(test_generator)
- x_val, y_val = next(val_generator)

Example 1. Chest X-Ray Images (Pneumonia) (Step 3. Data Preparation 3)

- · # Check which class is which
- · train_generator.class_indices

Example 1. Chest X-Ray Images (Pneumonia) (Step 4. Modeling 1)

- from keras.api_v2.keras.models import Sequential
 from keras.api_v2.keras.layers import Conv2D, MaxPooling2D
 from keras.api_v2.keras.layers import Dense, Flatten
- model = Sequential()
- model.add(Conv2D(16, (3,3), padding='same',input_shape=(224,224,3),activation='relu'))
 model.add(MaxPooling2D(pool_size=(2,2)))
 model.add(Conv2D(32, (3,3), padding='same',activation='relu'))
 model.add(MaxPooling2D(pool_size=(2,2)))
 model.add(MaxPooling2D(pool_size=(2,2)))
 model.add(MaxPooling2D(pool_size=(2,2)))
 model.add(MaxPooling2D(pool_size=(2,2)))
 model.add(Falten(f))

- model.add(Flatten())
 model.add(Dense(64, activation='relu'))
 model.add(Dense(1, activation='sigmoid'))
- · model.summary()

Example 1. Chest X-Ray Images (Pneumonia) (Step 4. Modeling 2)

- #from tensorflow.keras.optimizers_import_SGD
- from keras.api._v2.keras.optimizers import SGD
- model.compile(loss='mse',optimizer=SGD(learning_rate=0.087),metrics=['accuracy'])

Example 1. Chest X-Ray Images (Pneumonia) (Step 4. Modeling 3)

- # epochs=total//batch_siz
 model.fit(x_train, y_train, batch_size=128, epochs=12)

Example 1. Chest X-Ray Images (Pneumonia) (Step 5. Evaluation)

- loss, acc = model.evaluate(x_test, y_test) print(f'Correct Rate= {acc*100:.2f}%')

Example 1. Chest X-Ray Images (Pneumonia) (Step 6. Deployment)

- import numpy
- y_predict = numpy.argmax(model.predict(x_test), axis=-1)
 y_predict